BioOne.org will be down briefly for maintenance on 17 December 2024 between 18:00-22:00 Pacific Time US. We apologize for any inconvenience.
How to translate text using browser tools
1 October 2001 Calcium as a Modulator of Photosensitized Killing of H9c2 Cardiac Cells
Dennis Paul Valenzeno, Merrill Tarr
Author Affiliations +
Abstract

Illumination of H9c2 rat heart cells in the presence of Rose Bengal resulted in dose-dependent cell killing (assessed by trypan blue staining) and modification of ionic currents flowing through the heart cell membrane. Inhibitors of voltage-gated ionic currents were shown to have little effect on cell killing. Ionic current measurements were used to assess the increase in leak conductance of these cells, which has been suggested to be a causal factor in killing of other cell types (1). Inhibitors of voltage-gated ionic currents, including the sodium channel blocker tetrodotoxin (100 μM) and the calcium channel blocker lanthanum (10 μM) were shown to have little effect on cell killing. The potassium channel inhibitor tetraethylammonium (20 mM) inhibited cell killing, but the effect is viewed as being caused by an inhibition of leak current. The time course of block of voltage-activated ionic currents during illumination, in the presence of Rose Bengal, was rapid compared with that for induction of leak current and for cell killing. These observations are consistent with a role for leak current in photosensitized killing of cardiac cells. They are interpreted with respect to calcium influx through the leak current pathway as a trigger for the cellular response.

Dennis Paul Valenzeno and Merrill Tarr "Calcium as a Modulator of Photosensitized Killing of H9c2 Cardiac Cells," Photochemistry and Photobiology 74(4), 605-610, (1 October 2001). https://doi.org/10.1562/0031-8655(2001)074<0605:CAAMOP>2.0.CO;2
Received: 29 June 2001; Accepted: 1 July 2001; Published: 1 October 2001
JOURNAL ARTICLE
6 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

RIGHTS & PERMISSIONS
Get copyright permission
Back to Top